
SOP (Same Origin Policy) & CORS
(Cross Origin Resource Sharing)

Bypass

Byé

Manikandan D

2

What is Same Origin Policy?

2

üSame Origin Policy is a browser mechanism which restricts how a document or
script loaded from one origin can interact with resource from another origin.

üSame origin policy is one of the core and most important policy in
browsers which controls how JavaScript accesses documents across
different origins.

üThe basic idea behind SOP is that JavaScript from one origin should
not be able to access the properties/data on other origin. It is a
mechanism to block any access across the region to another domain
or region

üAn origin is defined as a combination of URI scheme (protocol),
hostname (domain), and port number.

3

44

SOP Access Rules

üIf the protocol, port and host are same for both pages it allows

üFor Example: http://store.company.com/dir/page

55

SOP will Block

Same Origin Policy will essentially block access from cross region:

1) Document Access - document object model

2) Object Access - Javascriptobjects

3) Ajax Requests - it will restrict security over ajax request

4) Prevent Data Leakage

66

SOP will not Block

Same origin policy will allow the external resources such as:

1) images - <imgsrc="[[URL]]">

2) Styles - <link rel href="[[]URL]">

3)scripts - <script src="[[URL]]">

77

Using other Vulnerability to Bypass SOP

Just consider we have opened an attacker website and banking website in a
browsernow the attackerwebsite is trying to accessyour bankingwebsitehere if
the application is enabledwith sameorigin policy it will not allow the attacker
website to accessyour bankingapplicationsothat it cannot stealanyinfo because
its comingfrom different domainor origin

88

SOP Bypass Techniques

üVulnerablePlugins

üJsonp(SOME)

üVulnerableBrowser

üServerMisconfiguration

üXSS/scripts

99

Bypassing SOP with JSONP (SOME)

JSON:

üJSON is a lightweight data exchange format - used to exchange data between
work location and web server

XML:

üJSON:

1010

Bypassing SOP with JSONP (SOME)

üSOME (Same Origin Method Execution) ςby Ben Hayak

üTo bypass the SOP, attacker invented JSON with padding

üWhy using JSONP:

ü3rd party services (Web Services) uses it

üCallback():

üBy using callback function we can bypass the SOP

Importing Contacts

1111

Bypassing SOP with JSONP (SOME)

Normal callback:

Modified script:

1212

Bypassing SOP with JSONP (SOME)

Example: Data theft by Bypassing SOP

1313

Bypassing SOP with JSONP (SOME)

1414

Bypassing SOP with JSONP (SOME)

1515

Bypassing SOP with JSONP (SOME)

1616

Bypassing SOP with JSONP (SOME)

1717

Bypassing SOP with JSONP (SOME)

Howto get rid of this:

ü1. Usestaticfunctionnameasa Callback

ü2. WhitelistCallbacks

ü3. RegisterCallbacks

1818

SOP Bypass using vulnerable Plugins

üJava

üAdobeReader

üFlash

üSilverlight

Bypassing SOP in Adobe Flash

üAdobe Flash uses the crossdomain.xml file, which can control applications wherever
Flash can receive data. We can set a restriction on this file to only trust mentioned sites
as follows:

1919

Server Misconfiguration

üAccessControlAllowOrigin

2020

Some Best practice to overcome SOP Bypass

üAlways use non-vulnerable browsers

üAlways use patched plugins in your browser

üDo not visit malicious website

üMake sure server configuration is proper for Access Controls/json

üMake sure the application does not have any vulnerability such XSS

2121

CORS (Cross Origin Resource Sharing)

üCORS is a mechanism that allows the web server to tell the browser that is safe to
accomplish a cross domain request.

üThe Cross-Origin Resource Sharing (CORS) mechanism gives web servers cross-domain
access controls, which enable secure cross-domain data transfers. Modern browsers
use CORS in an API container - such as XMLHttpRequestor Fetch - to mitigate risks of
cross-origin HTTP requests.

üThe Cross-Origin Resource Sharing standard works by adding new HTTP headers that
allow servers to describe the set of origins that are permitted to read that information
using a web browser.

example: header('Access-Control-Allow-Origin: *');

2222

CORS Standard

Thiscross-originsharingstandardisusedto enablecross-siteHTTPrequestsfor:

ü Invocationsof the XMLHttpRequestor FetchAPIsin a cross-site manner,asdiscussed
above

ü Web Fonts(for cross-domain font usagein @font-face within CSS),so that servers
candeployTrueTypefonts that canonly be cross-site loadedandusedby web sitesthat
arepermitted to do so

ü WebGLtextures

ü Images/videoframesdrawnto a canvasusingdrawImage

ü Stylesheets(for CSSOMaccess)

ü Scripts(for unmutedexceptions)

2323

Simple Request/Response

ü The only allowed methods are:

GET

HEAD

POST

2424

Preflight Request

ü "preflighted" requestsfirst send an HTTPrequest by the OPTIONSmethod to the
resourceon the other domain,in order to determinewhether the actualrequestis safe
to send

üIn particular,a requestispreflightedif anyof the followingconditionsis true:

If the requestusesanyof the followingmethods:

PUT

DELETE

CONNECT

OPTIONS

TRACE

PATCH

2525

Preflight Request/Response

ü

2626

CORS Misconfiguration

Poorlyimplemented,Bestcasefor Attack:

Access-Control-Allow-Origin: https://attacker.com

Access-Control-Allow-Credentials: true

Poorlyimplemented,Exploitable:

Access-Control-Allow-Origin: null

Access-Control-Allow-Credentials: true

